\(\int \frac {\sin ^2(e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\) [114]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 121 \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {(a+3 b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 a^{5/2} f}-\frac {\cos (e+f x) \sin (e+f x)}{2 a f \sqrt {a+b+b \tan ^2(e+f x)}}-\frac {3 b \tan (e+f x)}{2 a^2 f \sqrt {a+b+b \tan ^2(e+f x)}} \]

[Out]

1/2*(a+3*b)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(5/2)/f-1/2*cos(f*x+e)*sin(f*x+e)/a/f/(a+b
+b*tan(f*x+e)^2)^(1/2)-3/2*b*tan(f*x+e)/a^2/f/(a+b+b*tan(f*x+e)^2)^(1/2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {4217, 482, 541, 12, 385, 209} \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {(a+3 b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 a^{5/2} f}-\frac {3 b \tan (e+f x)}{2 a^2 f \sqrt {a+b \tan ^2(e+f x)+b}}-\frac {\sin (e+f x) \cos (e+f x)}{2 a f \sqrt {a+b \tan ^2(e+f x)+b}} \]

[In]

Int[Sin[e + f*x]^2/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

((a + 3*b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*a^(5/2)*f) - (Cos[e + f*x]*Sin[e
+ f*x])/(2*a*f*Sqrt[a + b + b*Tan[e + f*x]^2]) - (3*b*Tan[e + f*x])/(2*a^2*f*Sqrt[a + b + b*Tan[e + f*x]^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 482

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(n*(b*c - a*d)*(p + 1))), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 541

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a
*d)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*
f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 4217

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1
 + ff^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^2}{\left (1+x^2\right )^2 \left (a+b+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = -\frac {\cos (e+f x) \sin (e+f x)}{2 a f \sqrt {a+b+b \tan ^2(e+f x)}}+\frac {\text {Subst}\left (\int \frac {a+b-2 b x^2}{\left (1+x^2\right ) \left (a+b+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{2 a f} \\ & = -\frac {\cos (e+f x) \sin (e+f x)}{2 a f \sqrt {a+b+b \tan ^2(e+f x)}}-\frac {3 b \tan (e+f x)}{2 a^2 f \sqrt {a+b+b \tan ^2(e+f x)}}+\frac {\text {Subst}\left (\int \frac {(a+b) (a+3 b)}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 a^2 (a+b) f} \\ & = -\frac {\cos (e+f x) \sin (e+f x)}{2 a f \sqrt {a+b+b \tan ^2(e+f x)}}-\frac {3 b \tan (e+f x)}{2 a^2 f \sqrt {a+b+b \tan ^2(e+f x)}}+\frac {(a+3 b) \text {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 a^2 f} \\ & = -\frac {\cos (e+f x) \sin (e+f x)}{2 a f \sqrt {a+b+b \tan ^2(e+f x)}}-\frac {3 b \tan (e+f x)}{2 a^2 f \sqrt {a+b+b \tan ^2(e+f x)}}+\frac {(a+3 b) \text {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 a^2 f} \\ & = \frac {(a+3 b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 a^{5/2} f}-\frac {\cos (e+f x) \sin (e+f x)}{2 a f \sqrt {a+b+b \tan ^2(e+f x)}}-\frac {3 b \tan (e+f x)}{2 a^2 f \sqrt {a+b+b \tan ^2(e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.10 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.57 \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {(a+2 b+a \cos (2 (e+f x))) \sec ^3(e+f x) \left (4 (a+3 b) \arcsin \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right ) (a+2 b+a \cos (2 (e+f x)))-2 \sqrt {2} \sqrt {a} \sqrt {a+b} \sqrt {\frac {a+2 b+a \cos (2 (e+f x))}{a+b}} (a+6 b+a \cos (2 (e+f x))) \sin (e+f x)\right )}{32 a^{5/2} \sqrt {a+b} f \left (a+b \sec ^2(e+f x)\right )^{3/2} \sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}}} \]

[In]

Integrate[Sin[e + f*x]^2/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^3*(4*(a + 3*b)*ArcSin[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b]]*(a + 2*
b + a*Cos[2*(e + f*x)]) - 2*Sqrt[2]*Sqrt[a]*Sqrt[a + b]*Sqrt[(a + 2*b + a*Cos[2*(e + f*x)])/(a + b)]*(a + 6*b
+ a*Cos[2*(e + f*x)])*Sin[e + f*x]))/(32*a^(5/2)*Sqrt[a + b]*f*(a + b*Sec[e + f*x]^2)^(3/2)*Sqrt[(a + b - a*Si
n[e + f*x]^2)/(a + b)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(531\) vs. \(2(105)=210\).

Time = 5.31 (sec) , antiderivative size = 532, normalized size of antiderivative = 4.40

method result size
default \(-\frac {\left (b +a \cos \left (f x +e \right )^{2}\right ) \left (\cos \left (f x +e \right )^{2} \sin \left (f x +e \right ) \sqrt {-a}\, a -\cos \left (f x +e \right ) \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a -3 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) b \cos \left (f x +e \right )+3 \sqrt {-a}\, b \sin \left (f x +e \right )-\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a -3 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) b \right ) \sec \left (f x +e \right )^{3}}{2 f \,a^{2} \sqrt {-a}\, \left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}\) \(532\)

[In]

int(sin(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/f/a^2/(-a)^(1/2)*(b+a*cos(f*x+e)^2)*(cos(f*x+e)^2*sin(f*x+e)*(-a)^(1/2)*a-cos(f*x+e)*ln(4*(-a)^(1/2)*((b+
a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*
sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a-3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4
*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x
+e))^2)^(1/2)-4*sin(f*x+e)*a)*b*cos(f*x+e)+3*(-a)^(1/2)*b*sin(f*x+e)-((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/
2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+
cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a-3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos
(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f
*x+e)*a)*b)/(a+b*sec(f*x+e)^2)^(3/2)*sec(f*x+e)^3

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 243 vs. \(2 (105) = 210\).

Time = 0.67 (sec) , antiderivative size = 607, normalized size of antiderivative = 5.02 \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\left [-\frac {{\left ({\left (a^{2} + 3 \, a b\right )} \cos \left (f x + e\right )^{2} + a b + 3 \, b^{2}\right )} \sqrt {-a} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \, {\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} + 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right ) + 8 \, {\left (a^{2} \cos \left (f x + e\right )^{3} + 3 \, a b \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{16 \, {\left (a^{4} f \cos \left (f x + e\right )^{2} + a^{3} b f\right )}}, -\frac {{\left ({\left (a^{2} + 3 \, a b\right )} \cos \left (f x + e\right )^{2} + a b + 3 \, b^{2}\right )} \sqrt {a} \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} - {\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) + 4 \, {\left (a^{2} \cos \left (f x + e\right )^{3} + 3 \, a b \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{8 \, {\left (a^{4} f \cos \left (f x + e\right )^{2} + a^{3} b f\right )}}\right ] \]

[In]

integrate(sin(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/16*(((a^2 + 3*a*b)*cos(f*x + e)^2 + a*b + 3*b^2)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*c
os(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^
4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*
x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(
-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 8*(a^2*cos(f*x + e)^3 + 3*a*b*cos(f*x + e))*sq
rt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^4*f*cos(f*x + e)^2 + a^3*b*f), -1/8*(((a^2 + 3*a*b)
*cos(f*x + e)^2 + a*b + 3*b^2)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2
- 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*
b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) + 4*(a^2*cos(f*x + e)^3 + 3*a*b*cos(f*x + e))*sqrt(
(a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^4*f*cos(f*x + e)^2 + a^3*b*f)]

Sympy [F]

\[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\sin ^{2}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(sin(f*x+e)**2/(a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Integral(sin(e + f*x)**2/(a + b*sec(e + f*x)**2)**(3/2), x)

Maxima [F]

\[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sin(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^2/(b*sec(f*x + e)^2 + a)^(3/2), x)

Giac [F]

\[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sin(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^2}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}} \,d x \]

[In]

int(sin(e + f*x)^2/(a + b/cos(e + f*x)^2)^(3/2),x)

[Out]

int(sin(e + f*x)^2/(a + b/cos(e + f*x)^2)^(3/2), x)